
	 1	

MIDAS-G v1.2

1. Copyright

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

This software is distributed under the MIT license.

2. Quick Start

MIDAS-G is a multi-threading tool implemented in C++. It has two modes. The internal
mode is used for investigating fragmentation rules, while the official mode works as an
advanced version of MIDAS [1] with the additional ability of using graph grammars.

2.1 Binary Package
Users can use the pre-built standalone executable files that have been built for 64-bit
versions of operating systems. The Linux version is available at bin/linux/, while the
Windows version is available at bin/win. Both versions do not require additional
environment setting. Apple does not encourage static linking (please refer to
https://developer.apple.com/library/content/qa/qa1118/_index.html), so we provide two
versions at bin/mac/. MIDAS-G_static_mac is a single-threading version, which can run
on most Mac machines, while MIDAS-G_static_mac_mt is a multiple-threading version,
which requires libiomp5.dylib. Installing clang-omp by homebrew will also install
libiomp5.dylib. Please make sure the path to the folder containing libiomp5.dylib is
included in DYLD_LIBRARY_PATH. Or you can add it manually by the following
command.

export DYLD_LIBRARY_PATH=${your_libiomp5_pyth}:$DYLD_LIBRARY_PATH

In the rest of this document, we assume the binary package name is MIDAS-G

	 2	

2.2 Using MIDAS-G
To get command information, please run the following command.

./MIDAS-G –h

The above command will print all available command options. On windows, please
remove “./” in the above command and commands given in the rest of this section.

The complete list of options of MIDAS-G is given as follows.

-s spectra_file_path -w working_directory -c configure_file_path
-o output_directory -m mode (internal or official) -a annotation_file_name(optional)
-r results_file_name
-r and -a are just for official mode.
If -r is not specified, the default full output file name is spectra_file_name.meb
If -a is not specified, the default full annotation file name is spectra_file_name.AFT2
If working director is not specified, the current directory will be used as working
directory.
If output directory is not specified, the working directory is the output directory.
The current version doesn't search subdirectory

Here are some examples. Please refer to the following sections for configuration file
setting and input file format.

If MIDAS-G is used for investigating fragmentation rules, an example command is given
as follows.

./MIDAS-G -s ../../sample/sample.ms2 -c ../../sample/sample.cfg -o output/ -m internal

where sample.ms2 is the annotated MS/MS data file with internal format, sample.cfg is
the configuration file, and “internal” indicates the internal mode.

If MIDAS-G is used as an advanced version of MIDAS [1] for identifying metabolites
from non-annotated MS/MS data, an example command is given as follows.

./MIDAS-G -s ../../sample/sample.FT2 -c ../../sample/sample.cfg -o output/ -m official

where sample.FT2 is the FT2 file, while “official” indicates official mode.

3. Configuration File Setting
The configuration file format of MIDAS-G is similar to that of MIDAS [1]. An example
configure file is available at sample/sample.cfg. A line starts with “#” is for comments.
The usage of each option is given in the comments of the example configure file. There
are some key options users need to specify.

	 3	

 Metabolite_Database = path_of_the_database_file

It is better to use full path in the above option.

Default_Polarity = positive # or negative

Please use “positive” and “negative” for [M+H]+ and [M-H]-, respectively.

Graph_Grammar = true # or false

If a graph grammar is used for recognizing bonds, “Graph_Grammar” should be “true”,
otherwise, it should be “false”. If “Graph_Grammar” is false, MIDAS-G will ignore all
specified grammars.

Graph_Grammar_Path{no_4} = path_of_grammar_file
Graph_Grammar_Weight{no_4} = 2.0

Within “{}”, “no_4” is the grammar id. Please avoid using space in grammar id. “2.0” is
the grammar weight. It is better to use full path for “path_of_grammar_file”. Please note
that MIDAS-G can work with one or more graph grammars, if each grammar has its
unique id.

4. Grammar File Format
An EGG grammar file should follow GML format [2]. Four example files are available at
folder “sample” with extension name gml. A grammar is composed of one or more
production rules. Each production rule is represented using “production []”. Within “[]”,
there are “productionID”, “directionStatus”, “left[subgraph []]”, and “right[subgraph [
]]”. “productionID” should be a unique string. “directionStatus” should be “Undirected”.
“left[subgraph []]”, and “right[subgraph []]” represents the left hand side and right
hand side, respectively. Each part is composed of “node []” and “edge []”. The former
represents each vertex, while the latter represents each edge. “node []” has two required
fields. One is a unique node id, which should be a positive integer. The other is label,
which should be a string. If label is “Initial” or “"Initial"”, it is initial status. If label is
“*ANY*”, it can match any string. Usually, label represents the atom, e.g., “C” and “O”
for carbon and oxygen, respectively. If the node is “flexible” (this only happens in the
right hand side), it requires “flexible true” and specifying the corresponding node on the
left hand side like “left 1”. “edge []” contains several fields. “id” requires an unique id
that is a positive integer. “source” and “target” are ids of two connected nodes. Please
note that “source” and “target” are interchangeable, because all edges are undirected.
“label” uses format “field_1|field_2|field_3|field_4”. Each field can be “*ANY*” for
matching all possible cases. If the edge represents a linear bond, field_1 is “linear”,
otherwise “ring”. If the edge represents an aromatic bond, field_2 is “t”, otherwise “f”. If
the edge represents a conjugated bond, field_3 is “t”, otherwise “f”. The right most field,
field_4, represents bond type classified by RDKit [3]. Bond type includes
“UNSPECIFED”, “SINGLE”, “DOUBLE”, “TRIPLE”, “QUADRUPLE”,

	 4	

“QUINTUPLE”, “HEXTUPLE”, “ONEANDAHALF”, “TWOANDAHALF”,
“THREEANDAHALF”, “FOURANDAHALF”, “FIVEANDAHALF”, “AROMATIC”,
“IONIC”, “HYDROGEN”, “THREECENTER”, “DATIVEONE”, “DATIVE”,
“DATIVEL”, “DATIVER”, “OTHER”, and “ZERO”.

Please note that if a bond is successfully parsed by two or more grammars, it will be
assigned the highest weight.

5. Input file format
MIDAS-G supports two file formats for MS/MS data. If MS/MS data is not annotated,
i.e., the measured metabolite is unknown, all spectra should be stored in FT2 format [1],
[4], [5]. An example file with FT2 format is available at sample/sample.FT2. Otherwise,
The following internal format is suitable.

As for each spectrum, the first line follows the following format.
* Identifier Scan_Number Precursor_Neutral_Mass InChI
Then each line contains each peak.
+m/z Intentisy
The last line should be “//”. The following example contains two spectra.
An example file with this format is available at sample/sample.ms2. Please note that the
official mode accepts FT2 format, while the internal mode accepts the internal MS/MS
data formats.

MIDAS-G also supports two compound database formats. One is the official format
supported by MIDAS [1]. There are four columns in a database file, which are
“Identifier”, “Name”, “InChI”, and “Links”. Column names are given in the first line.
Except the first line, each line represents a compound. An example file with this format is
available at sample/sample.mdb. The other format does not have the title line and
contains five columns, which are “Identifier”, “InChI”, “precursor neutral mass”,
“name”, and “Links”. The latest version of MIDAS-G uses information of “Identifier”,
“Name”, and “InChI”. An example file with this format is available at
sample/sample.mdb.old. Please note that both database file formats are supported under
internal mode and official mode.

Reference
[1] Y. Wang, G. Kora, B. P. Bowen, and C. Pan, “MIDAS: A database-searching

algorithm for metabolite identification in metabolomics,” Anal. Chem., vol. 86, no.
19, pp. 9496–9503, 2014.

[2] M. Himsolt, “GML : A portable graph file format,” Passau, Germany, 1999.
[3] G. Landrum, “RDKit: Open-source cheminformatics,” 2013. [Online]. Available:

http://www.rdkit.org.
[4] C. Pan, B. H. Park, W. H. McDonald, P. A. Carey, J. F. Banfield, N. C.

VerBerkmoes, R. L. Hettich, and N. F. Samatova, “A high-throughput de novo
sequencing approach for shotgun proteomics using high-resolution tandem mass
spectrometry.,” BMC Bioinformatics, vol. 11, p. 118, Jan. 2010.

[5] Y. Wang, T.-H. Ahn, Z. Li, and C. Pan, “Sipros/ProRata: A versatile informatics

	 5	

system for quantitative community proteomics,” Bioinformatics, vol. 29, no. 16,
pp. 2064–2065, 2013.

Appendix

Building from Source Code

1. Linux
Install RDKit 2015_03_1 or above by following the instruction at link given as follows.
http://www.rdkit.org/docs/Install.html
Using anaconda is the easiest way, but you may also try other ways given in that
instruction. Please note that Boost is required for installing RDKit.

Set environment variables of RDBASE and BOOSTBASE

export RDBASE=/the_path_of_RDKit
export BOOSTBASE=/the_path_of_boost
export
LD_LIBRARY_PATH=$BOOSTBASE/lib:$RDBASE/lib:$LD_LIBRARY_PATH

For example,
export RDBASE=/Users/yingfeng/software/RDKit/rdkit-Release_2015_03_1
export BOOSTBASE=/usr/local/Cellar/boost/1.60.0_1
export
LD_LIBRARY_PATH=$BOOSTBASE/lib:$RDBASE/lib:$LD_LIBRARY_PATH

We suggest to add these three commands at ~/.bashrc.

Enter folder src/MIDAS_G/ and run

export EGGBASE=../EGG

Make sure g++ refers to g++ 4.8 or above.
make

The new generated MIDAS-G is the executable binary file.

2. Mac
Install homebrew by following the instruction at the link given as follows.
http://brew.sh/

Install clang-omp using homebrew.
brew install clang-omp

Install RDKit 2015_03_1 by following the instruction at the link given as follows.
http://www.rdkit.org/docs/Install.html

	 6	

Using anaconda is easiest way, but you may also try other ways given in that instruction.
Please note that Boost is required for installing RDKit.

Set environment variables of RDBASE and BOOSTBASE

export RDBASE=/the_path_of_RDKit
export BOOSTBASE=/the_path_of_boost
export
DYLD_LIBRARY_PATH=$BOOSTBASE/lib:$RDBASE/lib:$DYLD_LIBRARY_PAT
H

For example,
export RDBASE=/Users/yingfeng/software/RDKit/rdkit-Release_2015_03_1
export BOOSTBASE=/usr/local/Cellar/boost/1.60.0_1
export
DYLD_LIBRARY_PATH=$BOOSTBASE/lib:$RDBASE/lib:$DYLD_LIBRARY_PAT
H

Enter folder src/MIDAS_G/ and run

export EGGBASE=../EGG
make –f Makefile_mac

The new generated MIDAS-G is the executable binary file.

3. Windows
Download RDKit from https://github.com/rdkit/rdkit/archive/Release_2016_09_2.zip

Download MSYS2 from https://msys2.github.io/.

Install MSYS2 by following https://msys2.github.io/. The rest of this section assumes
you install it at C:\msys64 and your account is abc.

Run following three commands for installing MinGW, Boost, and cmake.

pacman -S mingw-w64-x86_64-toolchain
pacman -S mingw64/mingw-w64-x86_64-boost
pacman -S mingw64/mingw-w64-x86_64-cmake

Decompress RDKit package at C:\msys64\home\abc\software\RDKit\rdkit-
Release_2016_09_2

In MSYS2 shell, run
cd ~/software/RDKit/rdkit-Release_2016_09_2

	 7	

Use command "ls", you should many files like

appveyor.yml Code Data External license.txt rdkit rdkit-config-version.cmake.in
README.md ReleaseNotes.md setup.cfg CMakeLists.txt Contrib Docs INSTALL
Projects rdkit-config.cmake.in README Regress Scripts Web

Run following commands.
mkdir build
cd build
export PATH=$PATH:/mingw64/bin

Run the following command twice.
cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -
DBOOST_ROOT=/mingw64 -DBOOST_LIBRARYDIR=/mingw64/lib -
DMSVC_RUNTIME_DLL=C:/Windows/System32/msvcr120.dll -
DRDK_USE_BOOST_SERIALIZATION=OFF -
DRDK_BUILD_INCHI_SUPPORT=ON -
DRDK_BUILD_PYTHON_WRAPPERS=OFF -G "MinGW Makefiles" ..

Please note that DMSVC_RUNTIME_DLL=C:/Windows/System32/msvcr120.dll is for
windows 7.

Run the following commands.
mingw32-make
mingw32-make install
export RDBASE=~/software/RDKit/rdkit-Release_2016_09_2
export PATH=$PATH:$RDBASE/lib
mingw32-make test

If all tests are passed, we can build MIDAS-G now.

Decompress the package of MIDAS-G, and enter src/MIDAS_G.
Run the following command.
g++ -std=c++11 -O2 -fopenmp -I../EGG -I/mingw64/include -I${RDBASE}/External -
I${RDBASE}/Code -L/mingw64/lib -L${RDBASE}/lib main.cpp Database.cpp
MidasCore.cpp ParseConfigure.cpp SettingInfo.cpp SpectrumUnit.cpp
ParseSpectraFile.cpp ../EGG/EggCore.cpp ../EGG/FilesOperation.cpp ../EGG/GML.cpp .
./EGG/GraphBasics.cpp ../EGG/GraphGrammar.cpp ../EGG/ParseRegularGraph.cpp ../E
GG/Production.cpp ../EGG/ReadGML.cpp ../EGG/ReadGrammar.cpp ../EGG/ReadInput
Graphs.cpp ../EGG/RegularGraph.cpp -o MIDAS-G_win.exe -lAlignment -lCatalogs -
lChemReactions -lChemTransforms -lChemicalFeatures -lDataStructs -lDepictor -
lDescriptors -lDistGeomHelpers -lDistGeometry -lEigenSolvers -lFMCS -lFileParsers -
lFingerprints -lForceField -lForceFieldHelpers -lFragCatalog -lGraphMol -lhc -lInchi -
lInfoTheory -lMolAlign -lMolCatalog -lMolChemicalFeatures -lMolDraw2D -lMolHash
-lMolTransforms -lOptimizer -lPartialCharges -lRDGeneral -lRDGeometryLib -
lRDInchiLib -lSLNParse -lShapeHelpers -lSimDivPickers -lSmilesParse -lSubgraphs -

	 8	

lSubstructMatch -lAlignment -lCatalogs -lChemReactions -lChemTransforms -
lChemicalFeatures -lDataStructs -lDepictor -lDescriptors -lDistGeomHelpers -
lDistGeometry -lEigenSolvers -lFMCS -lFileParsers -lFingerprints -lForceField -
lForceFieldHelpers -lFragCatalog -lGraphMol -lhc -lInchi -lInfoTheory -lMolAlign -
lMolCatalog -lMolChemicalFeatures -lMolDraw2D -lMolHash -lMolTransforms -
lOptimizer -lPartialCharges -lRDGeneral -lRDGeometryLib -lRDInchiLib -lSLNParse -
lShapeHelpers -lSimDivPickers -lSmilesParse -lSubgraphs -lboost_filesystem-mt -
lboost_system-mt

If you want to build a static version, please use the following command.
g++ -static -std=c++11 -O2 -fopenmp -I../EGG -I/mingw64/include -
I${RDBASE}/External -I${RDBASE}/Code -L/mingw64/lib -L${RDBASE}/lib
main.cpp Database.cpp MidasCore.cpp ParseConfigure.cpp SettingInfo.cpp
SpectrumUnit.cpp
ParseSpectraFile.cpp ../EGG/EggCore.cpp ../EGG/FilesOperation.cpp ../EGG/GML.cpp .
./EGG/GraphBasics.cpp ../EGG/GraphGrammar.cpp ../EGG/ParseRegularGraph.cpp ../E
GG/Production.cpp ../EGG/ReadGML.cpp ../EGG/ReadGrammar.cpp ../EGG/ReadInput
Graphs.cpp ../EGG/RegularGraph.cpp -o MIDAS_static_win.exe -lAlignment_static -
lCatalogs_static -lChemReactions_static -lChemTransforms_static -
lChemicalFeatures_static -lDataStructs_static -lDepictor_static -lDescriptors_static -
lDistGeomHelpers_static -lDistGeometry_static -lEigenSolvers_static -lFMCS_static -
lFileParsers_static -lFingerprints_static -lForceField_static -lForceFieldHelpers_static -
lFragCatalog_static -lGraphMol_static -lhc_static -lInchi_static -lInfoTheory_static -
lMolAlign_static -lMolCatalog_static -lMolChemicalFeatures_static -
lMolDraw2D_static -lMolHash_static -lMolTransforms_static -lOptimizer_static -
lPartialCharges_static -lRDGeneral_static -lRDGeometryLib_static -lRDInchiLib_static -
lSLNParse_static -lShapeHelpers_static -lSimDivPickers_static -lSmilesParse_static -
lSubgraphs_static -lSubstructMatch_static -lAlignment_static -lCatalogs_static -
lChemReactions_static -lChemTransforms_static -lChemicalFeatures_static -
lDataStructs_static -lDepictor_static -lDescriptors_static -lDistGeomHelpers_static -
lDistGeometry_static -lEigenSolvers_static -lFMCS_static -lFileParsers_static -
lFingerprints_static -lForceField_static -lForceFieldHelpers_static -lFragCatalog_static -
lGraphMol_static -lhc_static -lInchi_static -lInfoTheory_static -lMolAlign_static -
lMolCatalog_static -lMolChemicalFeatures_static -lMolDraw2D_static -lMolHash_static
-lMolTransforms_static -lOptimizer_static -lPartialCharges_static -lRDGeneral_static -
lRDGeometryLib_static -lRDInchiLib_static -lSLNParse_static -lShapeHelpers_static -
lSimDivPickers_static -lSmilesParse_static -lSubgraphs_static -lSubstructMatch_static
/mingw64/lib/libboost_filesystem-mt.a /mingw64/lib/libboost_system-mt.a
/mingw64/lib/libboost_thread-mt.a

